5 resultados para Tolerância (fisiologia)

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strong selection pressure exerted by intensive use of glyphosate in cultivated areas has selected populations of the Rubiaceae weed species Borreria latifolia (Aubl.) K.Shum. (broadleaf buttonweed), Galianthe chodatiana (Standl.) E.L. Cabral (galiante) and Richardia brasiliensis Gomes (Brazilian pusley) with differential sensitivity to this herbicide in the South region of Brazil. The control of these weeds with herbicides is troublesome and signals the need to incorporate management practices of ruderal flora and crops, more sustainable and that results in more efficient control for long-term. Therefore, it is very important to expand the information about their biology and management. This study aimed: (a) select efficient methods to overcome dormancy of B. latifolia and G. chodatiana and determine how they influence the kinetics of seeds germination; (b) analyze the effects of temperature, irradiance, pH, aluminum and salinity on seed germination and initial growth of the B. latifolia, G. chodatiana e R. brasiliensis seedlings; (c) evaluate tolerance to glyphosate levels in biotypes of B. latifolia, G. chodatiana e R. brasiliensis through dose-response curves and compare two methods to evaluate herbicidal control; (d) and evaluated the effectiveness of alternative herbicides in pre-emergence and in early and late post-emergence of the three species. The treatment with KNO3 2%/3h + gibberellic acid 400 ppm resulted in higher percentage of G. chodatiana seed germination. This treatment and also the dry heat (60°C/30 min) + KNO3 2%/3h were more effective in overcoming dormancy of B. latifolia. G. chodatiana and R. brasiliensis tolerate lower temperatures during the germination process, while B. latifolia tolerate higher temperatures. B. latifolia and R. brasiliensis are positive photoblastic while G. chodatiana is indifferent to the photoperiod. B. latifolia shows higher germination and early development in pH 3, while G. chodatiana and R. brasiliensis prefer pH range between 5 and 7. B. latifolia and G. chodatiana were more tolerant to the aluminum during the germination process than R. brasiliensis. Low salt levels were sufficient to reduce the seed germination of the three species. Some biotypes of B. latifolia and R. brasiliensis showed medium-high glyphosate tolerance, not being controlled by higher doses than recommended. The G. chodatiana specie was not controlled with the highest dose used, showing a high glyphosate tolerance. The sulfentrazone, s-metolachlor and saflufenacil herbicides sprayed in pre-emergence showed high efficacy both on B. latifolia and R. brasiliensis, while chlorimuron-ethyl and diclosulan were effective only on R. brasiliensis. In early post-emergence the fomesafen, lactofem and flumioxazin herbicides efficiently controlled plants of all species, while bentazon showed high efficacy only on B. latifolia. Noteworthy the susceptibility of the G. chodatiana specie for applications in early post-emergence, because the control effectiveness and the number of effective herbicides are reduced with increasing the plant age. Many treatments with tank mix or sequencial applications with glyphosate, were effective in controlling B. latifolia and R. brasiliensis plants in advanced stage of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of weeds decreases the crop yield. Among the alternatives to reduce the crop yield loss, it can be included to increase the competitive ability of the crop and the chemical control of the weeds. A research program was developed in the course of Agronomy at Federal Technological University at Paraná, Campus Pato Branco - PR, during the years 2015/16, with the objectives evaluating if gibberellin inhibitors increase the competitive ability of bean plants, making them insensitive to the initialism, extending the period prior to weed-crop interference. Evaluate the tolerance of common bean plants to the herbicide ethoxysulfuron and investigate the existence of relationship between the plant mass and the level of tolerance of the plants to the herbicide. Evaluate the effect of increasing doses of ethoxysulfuron on morphological characteristics, yield components and grain yield of the bean cultivars IPR Tangará and IPR Andorinha. Evaluate the effect of increasing doses of ethoxysulfuron on the development of IAC Imperador and the community of weeds present in the area. Elucidate the mechanism that confers tolerance to bean plants to the herbicide ethoxysulfuron. The results indicate that gibberellin inhibitors were not effective in increasing periods of weed-crop coexistence. Trinexapac-ethyl increased 20% the grain yield of bean plants. It was observed high variability as the response of bean cultivars to the herbicide ethoxysulfuron, however, despite high doses (200 g ha-1), it was not observed death of the plants. The field results indicate that when the ethoxysulfuron dose is 83.2 g ha-1, the reduction in grain yield can reach 40% with the cultivar IPR Tangará and 30% in the cultivar IPR Andorinha. However, respectively for each cultivar cited, ethoxysulfuron at 17 and 12 g ha-1 are enough to reduce 10% of grain yield. Evaluating the control of weeds within the bean crop cultivar IAC Imperador with the herbicide ethoxysulfuron, it was observed that doses at 20 g ha-1 are enough to control soybean and Ipomoea spp. plants. But, due to the level of plant injury, the crop grain yield increase was not sufficient to match the one observed on the weed-free untreated control. The mechanism of tolerance of bean plants to ethoxysulfuron appears to be the herbicide degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The jabuticaba tree has great potential for commercial exploitation. However, its is very little used. This fact shows to be necessary to do studies that allow understand their growth behavior during the year and, if it is tolerant to frost. So that it can establish management strategies for cultivation in orchard. Other point, it is the fact that the long juvenile period of jabuticaba tree limits its use. However, many species have compound leaves that characterize them as functional compounds, what to posible its commercialization. If the leaf jabuticaba tree also present such nutraceutical compounds, this it may become an alternative source of income until the plant to start its yield. The objectives of this study were to analyze the growth behavior, the occurrence of flowering and fruit set, and the frost tolerance of jabuticaba tree genotypes present in the collection of Native Fruit from UTFPR – Câmpus Dois Vizinhos. Associated growth analysis was made evaluation of genetic divergence among these genotypes, checking the adaptive behavior in orchard condition through adaptability and stability analysis based on growth measures to stem and shoots; estimating the repeatability coefficient of stem length of characters and primary shoots, and determine the minimum number of evaluations able to provide certain levels of prediction of the actual value of these individuals. Also determined the genetic divergence among genotypes as the leaves of antioxidant activity by DPPH and ABTS methods, as well as the determination of total phenolics. The genotypes studied were put in orchard in 2009. The growth response in the three cycles was variable between months and genotypes, what it can be difficult the practices in the orchard if it do not use clones. Genotypes 'Silvestre' and 'Açú' showed greater width and leaf area compared with other genotypes, but such behavior is not favored for increased stem growth and primary shoots. Foliar increments in most genotypes occurred in the fall for leaf width, spring for length and leaf area, despite the winter also arise with genotypes, it showed superiority to width and leaf area. Most jabuticabas trees were juvenile stage with only four starting at its transition between the vegetative and reproductive phase. Tolerance to frost was observed in 26 families jabuticabeira of the 29 present in the collection. The diversity among the genotypes was to change with the time, already in each cycle, there was the formation of different groups by the methods used. The methods tested for adaptability and stability of the jabuticaba tree growth behavior did not show the same pattern in the results. The number of measurements needed to predict the actual value of genotypes based on variables evaluated was approximately one to the stem length and four for the shoots based on the method of main components of covariance with 90% probability. he antioxidant activity of the extracts of leaves of jabuticaba tree genotypes were demonstrated high when compared to other species by methods DPPH and ABTS, as well as the amount of phenolic compounds. Genotype 'Silvestre' and 'IAPAR' showed the highest antioxidant activity in the leaves. However, the genetic divergence among genotypes jabuticaba tree from collection of Native Fruit trees at UTFPR - Câmpus Dois Vizinhos for antioxidant activity leaves showed that they have great homogeneity among them and the low divergence. However, it is recommended as possible hybridization the use as parents, José 4, IAPAR 4 and Fernando Xavier genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental pollution caused by industries has increased the concentration of pollutants in the environment, especially in water. Among the most diverse contaminants, there is the metals, who may or may not to be heavy/toxic, causing effluent of difficult treatment when in low concentrations. The search for alternative measures of wastewater effluent treatment has led to studies using phytoremediation technique through the various matrices (plant, fungi, bacteria) as means of polishing treatment to remove contaminants by means of biosorption/bioaccumulation. In order to use the phytoremediation technique for removing metals of the environmental, it have been performed bioassay with the macrophyte Pistia stratiotes. The bioassays were realized with healthy plants of P. stratiotes acclimatized in a greenhouse, at room temperature and lighting conditions during 28 days of cultivate. The cultivations were performed in glass vessels containing 1 L of the hydroponic solution with chromium (VI) in the potassium dichromate form with concentration range 0.10 to 4.90 mg L-1. The experiments were performed by Outlining Central Composite Rotational (OCCR), where the kinetics of bioaccumulation and chlorophyll a fluorescence were monitored in plants of P. stratiotes during cultivation. The collections of the samples and cultive solution were performed according to the OCCR. The chromium levels were measured in samples of P. stratiotes and the remaining solutions by the methodology of atomic absorption spectrometry by flame. The tolerance of P. stratiotes in relation to exposure to chromium (VI) was analyzed by parameters of physiological activity by means of chlorophyll a fluorescence, using the portable fluorometer PAM (Pulse Amplitude Modulation). The development of P. stratiots and their biomass were related to the time factor, while bioaccumulation capacities were strongly influenced by factors of time and chromium concentration (VI). The chlorophyll fluorescence parameters were affected by chromium and the exposure time at the bioassays. It was obtained an higher metal removal from the root in relation to the sheet, reaching a high rate of metal removal in solution. The experimental data removal kinetics were represented by kinetic models Irreversibly Langmuir, Reversible Langmuir, Pseudo-first Order and Pseudo-second Order, and the best fit for the culture solution was the Reversible Langmuir model with R² 0.993 and for the plant the best model was Pseudo-second order with R² 0.760.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of genotypes for drought tolerance has a great importance in breeding programs. The aim of this study was to characterize genotypes of beans in response to drought tolerance in different reproductive stages through physiologic, agronomic and molecular analysis. The experiment was conducted in greenhouse, using a randomized block design with four replicates; 10 cultivars: ANFC 9, ANFP 110, BRS Esplendor, BRSMG Realce, IPR Siriri, IPR Tangará, IPR Tuiuiu, IPR Uirapuru, IAC Imperador and IAC Milênio under two conditions of irrigation: plants irrigated during their entire life cycle, and plants under irrigation suppression in the reproductive stage (R7) until 16% of field capacity, when the irrigation was restored. In the last four days of stress, the gas exchanges were analyzed, and in the last day of stress was analyzed the percentage of closed stomata in the abaxial surface of the leaves, collected in different times of the day (9h, 12h, 15h and 18h). Additionally, plant samples were collected for the following analysis: fresh and dry mass of leaves, stems and legumes, and proline content in leaves and roots. The plants were harvested at the physiological maturity and the yield components and grain yield were determined. In addition, in order to identify polymorphisms in the sequences of promoters and genes related to drought, seven pairs of primers were tested on the group of genotypes. The drought susceptibility indexes (ISS) ranged from 0.65 to 1.10 in the group of genotypes, which the lowest values observed were for IAC Imperador (0.65) and BRS Esplendor (0.87), indicating the ability of these two genotypes to maintain grain yield under water stress condition. All genotypes showed reduction in yield components under water stress. IAC Imperador (43.4%) and BRS Esplendor (60.6%) had the lowest reductions in productivity and kept about 50% of the stomata closed during all the different times evaluated at last day of irrigation suppression. IAC Imperador showed greater water use efficiency and CO2 assimilation rate under drought stress. IPR Tuiuiú, IPR Tangará and IAC Imperador had the highest proline concentrations in the roots. Under water stress condition, there was a strong positive correlation (0.696) between the percentage of stomata closed with the number of grains per plant (0.696) and the fresh mass of leaves (0.731), the maximum percentage of stomata closed 73.71% in water stress. The accumulation of proline in the root was the character that most contributed to the divergence between the genotypes under water deficit, but not always the genotypes that have accumulated more proline were the most tolerant. The polymorphisms in DNA of coding and promoting sequences of transcription factors studied in this experiment did not discriminate tolerant genotypes from the sensitive ones to water stress.